The structure and stability of reduced and oxidized mononuclear platinum species on nanostructured ceria from density functional modeling.
نویسندگان
چکیده
We report our results for the structure and relative stability of mononuclear platinum species on a ceria nanoparticle Ce21O42 depending on reduction or oxidation of the system. The most stable platinum species is Pt(2+) at small {100} facets, where the ion is coordinated in a square-planar complex with four oxygen anions as ligands. Partial reduction of the system does not affect the state of platinum in this position but causes reduction of cerium ions. Atomic platinum species in all other modeled positions on the surface of the ceria nanoparticle are found to be in the oxidation state 0. Based on the calculated thermodynamic quantities we analyzed the formation of a preferable type of platinum species depending on the temperature and O2 pressure. Our thermodynamic model shows that the most stable species under standard conditions is PtO, while at the partial pressure of O2 below 100 Pa the stoichiometric complex Pt-Ce21O42 is formed. In both structures there is Pt(2+) located in a square-planar complex. The characteristics of these two structures fit well the available EXAFS and XPS data. These structures are energetically stable with respect to sintering, while the agglomeration to platinum clusters is exothermic for the neutral mononuclear Pt species located at {111} facets.
منابع مشابه
Effect of Dopant on Improving Structural, Density and Functional Properties of Ceria Based SOFC Electrolyte
In the present work, Gadolinium Doped ceria (GDC) based solid electrolyte was successfully synthesized through wet chemical method to operate at intermediate temperature (500–700°C) for SOFCs. DSC study revealed the formation of GDC phase at 900°C during calcination. The crystal structure of GDC was identified as cubic fluorite phase and the crystallite size was found to be around 23 nm....
متن کاملPlatinum Nanoparticles Deposited on Oxygen-Containing Functional Groups at Carbon Vulcane XC-72 as a Cathode Catalyst for Direct Methanol Fuel Cell
Surface oxidized carbon vulcane XC-72 is prepared as catalyst support and platinumnanoparticles are chemically anchored onto the modified surface. The nanoparticles of Pt weresynthesized by reduction of H2PtCl6 with sodium borohydride in a 5.5 M buffer solution ofsodium citrate; the complexation of citrate with metal ions is beneficial to the formation ofnanoparticles. The electro-oxidation of ...
متن کاملEffect of platinum on Ceria supported Cu catalysts for PrOx process in fuel processors
The CO preferential oxidation (PrOx) is one of the critical steps in hydrogen production and purification for Polymer Electrolyte Membrane Fuel Cell (PEMFC). This reaction was investigated in the presence of excess hydrogen over Cu/CeO2, Pt/CeO2 and Cu-Pt/CeO2 catalysts. The ceria supports was prepared via precipitation method and Cu-Pt/CeO2 catalyst was synthesized by sequential impregnation o...
متن کاملPlatinum Extraction Modeling from Used Catalyst by Iodine Solutions
Platinum extraction from spent reforming catalysts in iodine solutions under atmospheric pressure at different temperatures, acid concentration, and iodine spices concentration, catalyst particle size, and impeller agitation speed have been studied in our group. In this system, platinum is oxidized from spent catalyst with I3¯ that is formed ...
متن کاملCO Adsorption on the V (100) Surface: A Density Functional Study
Adsorption of CO molecule on the Vanadium surface has been studied by using of the DFT method with LANL2DZ,6-31G* and 6-31G** basis sets by GGA approximation of theory. Using periodic first principles simulations we investigate the interaction of oxygen molecule with regular V (100) surface. The limitation of this approach is the use of thin metallic slabs with a limited range for their coverag...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 17 22 شماره
صفحات -
تاریخ انتشار 2015